

Regent Studies | www.regentstudies.com

Connnoln Mulkililles

SonnగొOగ

Nurnbers

5(ancicolb

Adding Six-Digit Numbers Using Column Method

1 | | 2 | 4 | 9 | 4 | 9 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | 4 | 8 | 9 | 2 | 9 | 4 |
| | | | | | | 9 |

Place the numbers one on top of the other, lining up the digits in the right columns. Start with the lowest value place value column. In this calculation, add the ones digits: $5+4=9$.

Add the thousands: $9+9=$ 18. Regroup the 10 thousands for 1 ten thousand, and write it underneath the ten thousands column.

Add the tens: $9+9=18$. Regroup the 10 tens for 1 hundred and write it underneath the hundreds column.

\section*{5
 | | 2 | 4 | 9 | 4 | 9 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | 4 | 8 | 9 | 2 | 9 | 4 |
| | | 3 | 8 | 7 | 8 | 9 |
| | 1 | 1 | 1 | | | |}

Add the ten thousands, remembering the extra one underneath: $4+8+1=13$. Regroup the 10 ten thousands for 1 hundred thousand, and write it underneath the hundred thousands column.

3

	2	4	9	4	9	5
+	4	8	9	2	9	4
				7	8	9

Add the hundreds, remembering the extra one underneath:

$$
4+2+1=7
$$

\section*{6
 | | 2 | 4 | 9 | 4 | 9 | 5 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| + | 4 | 8 | 9 | 2 | 9 | 4 |
| | 7 | 3 | 8 | 7 | 8 | 9 |
| 1 | 1 | 1 | | | | |}

Add the hundred thousands, remembering the extra one underneath: $2+4+1=7$. Don't forget to check your answer!

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4

Let's look at the number calculation:

249495 + 489294

Place the numbers one on top of the other, lining up the hundred thousands, ten thousands, thousands, hundreds, tens and ones.

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4
						9

Start with the lowest value place value column.

Add the ones and write the total in the answer section.

$$
5+4=9 \text { ones }
$$

3

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4
					8	9

1

Add the tens.
$9+9$ tens = 18 tens
= $10+8$ tens

Regroup 10 tens for 1 hundred and regroup into the hundreds column, underneath the answer section.

Write 8 tens in the answer section.

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4
				7	8	9

1

Add the hundreds, remembering the one hundred that was regrouped.
$4+2+1=7$ tens
Write 7 tens in the answer section.

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4
			8	7	8	9
1						

Add the thousands.
$9+9=18$ thousands
$=10+8$ thousands

Regroup 10 thousands for 1 ten thousand and regroup into the ten thousands column, underneath the answer section.

Write 8 thousands in the answer section.

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4
		3	8	7	8	9
1						

Add the ten
thousands, remembering the one ten thousand that was regrouped.
$4+8+1=13$ ten thousands $=10$ ten thousands +3 ten thousands

Exchange 10 ten thousands for 1 hundred thousand and regroup into the hundred thousands column, underneath the answer section.

Write 3 ten thousands in the answer section.

	HTh	TTh	Th	H	T	O
	2	4	9	4	9	5
+	4	8	9	2	9	4
	7	3	8	7	8	9
1						1

Add the hundred thousands, remembering the one hundred thousand that was regrouped.
$2+4+1=7$ hundred thousands

Write 7 in the hundred thousands part of the answer section.

Always recheck your method of calculation.

Common Factors

A common factor is a factor of 2 or more numbers.
E.g. 3 is a common factor of 6 and 15.

Common Multiples

A common multiple is a multiple of 2 or more numbers. E.g. 10 is a common multiple of 2 and 5.

Multiples of 2

10
 20

 15

Multiples of 5

Factors and Multiples

A factor can be used to divide a number and produce a whole number answer. Factors come in pairs.

What are all the factors of 12?

The factors of 12 are:
$1,2,3,4,6$ and 12

Remember:

A factor is a number that is multiplied with another, making a product.

Multiples appear in the number's multiplication table. You can calculate them by counting on by that number.

What are all the multiples of 12 ?

$$
12+12=24
$$

\square

$$
12+12+12=36
$$

$12+12+12+12=48$

The multiples of 12 include:
$12,24,36,48$...

Remember:

Multiples are a product of one of the factors that you started your calculation with.

Long Division With Decimals

The number by which another number is to be divided is known as the divisor.

The number being divided is known as the dividend. When we divide, we are wanting to share the dividend by the divisor.

So in this case, we want to see how many times 12 will go into 591.

Let's have a go at solving this number equation.

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 5 | 9 | 1 | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

How many 12s are there in 59?
The answer to this question is 4, which is written above the 9 .

Write the product of 4 and 12 (48) under the 59. Then subtract 48 from 59 giving 11.

The 1 is then brought down and written next to the 11 to make 111.

| | | | 4 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 5 | 9 | 1 | | |
| | - | 4 | 8 | \downarrow | | |
| | | 1 | 1 | 1 | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

How many 12 s are there in $111 ?$
The answer to this question is 9 , which is written above the 1 .

Write the product of 9 and 12 (108) under the 111 and subtract it, giving 3 .

Extend 591 into the decimals to continue the process of long division.

How many 12 s are there in 30 ?
The answer to this question is 2 , which is written above the 0 in the tenths place.

Write the product of 2 and 12
(24) under the 30 and subtract

			4	9	2	
1	2	5	9	1	0	0
	-	4	8	\downarrow		
		1	1	1		
	-	1	0	8	\downarrow	
				3	0	
			-	2	4	
					6	0

How many 12 s are there in 60 ?
The answer to this question is 5 , which is written above the 0 in the hundredths place.

Write the product of the 5 and the 12 (60) under the 60 and subtract it, giving zero.

Always recheck your method of calculation.

			4	9	2	5
1	2	5	9	1	0	0
	-	4	8	\downarrow		
		1	1	1		
	-	1	0	8	\downarrow	
				3	0	
			-	2	4	\downarrow
					6	0
				-	6	0

The number by which another number is to be divided is known as the divisor.

The number being divided is known as the dividend. When we divide, we are wanting to share the dividend by the divisor.

So in this case, we want to see how many times 46 will go into 609.

Let's have a go at solving this number equation.

	4	6	6	0	9	

How many 46s are there in $60 ?$
46 doesn't go into 6 but it does go into 60. The answers to this question is 1 , which is written above the 0 .

Write the product of 1 and 46 (46) under the 60 and subtract it, giving 14.

The 9 is then brought down and written next to the 14 to make 149.

				1		
	4	6	6	0	9	
		-	4	6	\downarrow	
			1	4	9	

How many 46 s are there in $149 ?$
The answer to this question is 3 , which is written above the 9.

Write the product of 3 and 46 (138) under the 149 and subtract it, giving 11.

So $609 \div 46=13 \mathrm{r} 11$
Always recheck your method of calculation.

Let's look at the number calculation:
1735×37
Place the numbers one on top of the other, lining up the thousands, hundreds, tens and ones.

	TTh	Th	H	T	O	
		1	7	3	5	
\times				3	7	

We always start by multiplying by the smallest value. This is the digit in the ones place in this calculation.

Multiply the ones digit in the two-digit number by the digit in the ones place in the four-digit number.
$5 \times 7=35$
$=35$ ones
$=3$ tens and 5 ones
Place the 5 ones in the ones answer and regroup the 3 tens by writing a small 3 in the tens column.

Next multiply the ones in the two-digit number by the tens in the four-digit number, remembering to regroup the ' 3 ' in the tens column.
7×3 tens +3 ten
$=7 \times 3+3$
$=24$ tens
$=2$ hundreds and 4 tens
Place 4 into the tens answer and regroup the 2 hundreds by writing a small 2 in the hundreds column.

Next multiply the ones in the twodigit number by the hundreds in the four-digit number.
7×7 hundreds +2
$=7 \times 7+2$
$=51$ hundreds
$=5$ thousands and 1 hundred
Place the 1 into the hundreds part of the answer and regroup the 5 thousands by writing a small 5 in the thousands column.

	TTh	Th	H	T	O	
		1	7	3	5	
\times				3	7	
			5	1	2	4
		5	5			

Next, multiply the ones in the two-digit number by the thousands in the four-digit number.
7×1 thousand +5
$=7 \times 1+5$
$=12$ thousands
$=1$ ten thousand and 2 thousands
Place these numbers into the answer.

	TTh	Th	H	T	O	
		1	7	3	5	
\times				3	7	
	1	2_{5}	1_{2}	4_{3}	5	

Next we are going to multiply the tens in the two-digit number by the four-digit number.

Because we are multiplying by 30, we need to place a zero in the right-hand column as a place holder.

Multiply the tens digit in the two-digit number by the digit in the ones place in the four-digit number.

3 tens $\times 5$
$=15$ tens
$=1$ hundred and 5 tens
Place the 5 tens in the tens answer section and regroup the 1 hundred by writing a small 1 in the hundreds column.

Multiply the tens digit in the two-digit number by the digit in the tens place in the four-digit number.

3 tens $\times 3$ tens $=9$ hundreds
Add the regrouped 1 hundred.
9 hundreds +1 hundred
$=10$ hundreds
$=1$ thousand
Place a 0 in the hundreds answer section and regroup the 1 thousand by writing a small 1 in the thousands column.

	TTh	Th	H	T	O	
		1	7	3	5	
\times				3	7	
	1	2_{5}	1_{2}	4	4	5
			0_{1}	5	0	

Multiply the tens digit in the two-digit number by the digit in the hundreds place in the four-digit number.

3 tens $\times 7$ hundreds
$=21$ thousands
Add the regrouped 1 thousand.
21 thousands +1 thousand
$=22$ thousands
$=2$ ten thousands and 2 thousands
Place 2 into the thousands answer section and regroup the 2 ten thousands by writing a small 2 in the ten thousands column.

Multiply the tens digit in the two-digit number by the digit in the thousands place in the four-digit number.

3 tens $\times 1$ thousand
$=3$ ten thousands
Add the regrouped 2 thousands.
3 ten thousands +2 ten thousands
$=5$ ten thousands
Place 5 into the ten thousands answer section.

	TTh	Th	H	T	0	
		1	7	3	5	
\times				3	7	
	1	2_{5}	1_{2}	4_{3}	5	
	5	2	0_{1}	5	0	

Add the answers together, starting with smallest value. If you need to regroup any numbers, complete this under the answer line.

The answer is 64195.
Always recheck your method of calculation.

	TTh	Th	H	T	0	
		1	7	3	5	
\times				3	7	
	1	2_{5}	1_{2}	4_{3}	5	
	5	2_{1}	0_{1}	5	0	
	6	4	1	9	5	

Prime Numbers

A prime number is a whole number which can only be divided by 1 and itself.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	
31	32	33	34	35	36	37	38	39	
4	42	43	44	45	46	47	48	49	
51	52	58	54	55	56	57	58	59	
6	62	63	64	65	66	67	68	69	
	72	73	74	75	76	77	78	79	
81	82	83	84	85	86	87	88	89	
91	92	93	94	95	96	97	98	99	

Remember these facts about prime numbers!

There are no even prime numbers except 2.

There are no prime numbers ending in 5 , except 5.

The digits can't add up to 3 except 3 (digital root).

1	2	5	2	2	7	2	0

The number by which another number is to be divided is known as the divisor.

The number being divided is known as the dividend.
When we divide, we are wanting to share the dividend by the divisor.

So in this case, we want to see how many times 12 will go into 5227.20

Let's have a go at solving this number equation.

			4				
1	2	5	2	${ }^{4} 2$	7	2	0

Divide 52 hundreds by 12. This gives a result of 4 (hundreds) remainder 4 .

The remainder 4 (hundreds) is exchanged for 40 tens. This is shown by a small 4 in front of the existing 2 tens to make 42 tens.

The 4 is written in the hundreds position of the answer above the line.

			4	3			
1	2	5	$2^{4} 2$	${ }^{6} 7$	2	0	

Divide 42 (tens) by 12.
This gives the result of 3 (tens) remainder 6 .
The 3 is written in the tens position of the answer above the line. The remainder 6 (tens) is exchanged for 60 ones.

This is shown by a small 6 in front of the existing 7 ones to make 67 ones.

			4	3	5		
1	2	5	2	${ }^{4} 2$	${ }^{6} 7$	${ }^{7} 2$	0

Divide 67 (ones) by 12.
This gives a result of 5 ones remainder 7 .
The 5 is written in the ones position of the answer above the line. The remainder 7 (ones) is exchanged for 70 tenths.

This is shown by a small 7 in front of the existing 2 tenths to make 72 tenths.

			4	3	5	6	
1	2	5	2	${ }^{4} 2$	${ }^{6} 7$	${ }^{7} 2$	0

Divide 72 (tenths) by 12.
This gives the result of 6 (tenths).
This 6 is written in the tenths position of the answer above the line.
$5227.20 \div 12=436.6$
Always recheck your method of calculation.

1	2	5	2	8	4	

The number by which another number is to be divided is known as the divisor.

The number being divided is known as the dividend.
When we divide, we are wanting to share the dividend by the divisor.

So in this case, we want to see how many times
12 will go into 5284.
Let's have a go at solving this number equation.

			4			
1	2	5	2	${ }^{4} 8$	4	

Divide 52 (hundreds) by 12.
This gives the result of 4 (hundreds) remainder 4.
The remainder 4 (hundreds) is exchanged for 40 tens.
This is shown by a small 4 in front of the existing 8 tens to make 48 tens. The 4 is written in the hundreds position of the answer above the line.

			4	4		
1	2	5	2	${ }^{4} 8$	4	

We divide 48 (tens) by 12.
This gives the result of 4 (tens).
The 4 is written in the tens position of the answer above the line.

			4	4	0	$r 4$
1	2	5	2	4	4	

We divide the 4 (ones) by 12 .
This cannot be done, so there are four remaining.
A zero is placed in the ones answer section as well as remainder 4 .

So $5284 \div 12=440$ r 4
Always recheck your method of calculation.

Subtracting Six-Digit Numbers Using Column Method

1

Place the numbers one on top of the other, lining up the thousands, hundreds, tens and ones. Start with the lowest value place value column. In this calculation, subtract the ones (the answer to $4-9$ is negative).

4

	4	9	$6 \not /$	${ }^{1} 2$	${ }^{5} \not 6^{1}$	4
-	3	2	4	8	1	9
				4	4	5

Subtract the hundreds (the answer to 200-800 is negative). Exchange a thousand from the 7000 to give: $1200-800=400$.

2

	4	9	7	2	${ }^{\prime}$	1
4						
-	3	2	4	8	1	9
						5

Exchange a ten from the 60 to give 14 ones. Subtract the ones: $14-9=5$.

5

	4	9		1	2	$5 \not{ }^{5}$
1	4					
-	3	2	4	8	1	9
	1	7	2	4	4	5

Subtract the thousands: $6000-4000=2000$.
Subtract the ten thousands: $90000-20000=70000$.
Subtract the hundred thousands: $400000-300000=100000$.

3

	4	9	7	2	${ }^{6}$	1
	4					
-	3	2	4	8	1	9
					4	5

Subtract the tens: 50-10 $=40$.

$$
6 \begin{array}{|l|l|l|l|l|l|l|}
\hline 4 & 9 & 7 & 2 & 6 & 4 \\
\hline- & 3 & 2 & 4 & 8 & 1 & 9 \\
\hline & 1 & 7 & 2 & 4 & 4 & 5 \\
\hline
\end{array}
$$

Don't forget to check your answer!

	HTh	TTh	Th	H	T	O
	4	9	7	2	6	4
-	3	2	4	8	1	9

Let's look at the number calculation:

497-264-324819

Place the numbers one on top of the other, lining up the hundred thousands, ten thousands, thousands, hundreds, tens and ones.

	HTh	TTh	Th	H	T	O
	4	9	7	2	6	${ }^{5} 4$
-	3	2	4	8	1	9
						5

Subtract the ones
(the answer to 4-9 is negative).
Exchange 1 ten from the 60 to give 14 ones. Subtract the ones: $14-9=5$.

	HTh	TTh	Th	H	T	O
	4	9	7	2	${ }^{5} 6$	${ }^{1} 4$
-	3	2	4	8	1	9
					4	5

Subtract the tens:
$50-10=40$

	HTh	TTh	Th	H	T	O
	4	9	${ }^{1} /{ }^{1}$	${ }^{1} 2$	${ }^{1} 4$	
-	3	2	4	8	1	9
				4	4	5

Subtract the hundreds
(the answer to 200-800 is negative).
Exchange 1 thousand from the 7000
to give: $1200-800=400$.

	HTh	TTh	Th	H	T	0
	4	9	${ }^{1} \not \nearrow$	${ }^{1} 2$	${ }^{5}$	6

Subtract the thousands: $6000-4000=2000$

Subtract the ten thousands: 90 000-20 000 = 70000

Subtract the hundred thousands: $400000-300000=100000$

Always recheck your method of calculation.

add

subtract

multiply

divide

order of operations

estimate

predict

solve

common multiple

lowest common multiple

factors

common factors

highest common

 factor
prime number

formal written method

exponents

BODMAS

regroup

exchange

multi-step problems

two-step problems

one-step
 problem

inverse

rounding

rounded to a certain degree of accuracy

Addition, Subtraction, Multiplication and Division

add
subtract
multiply
divide
order of operations
estimate
sodict
common multiple
lowest common multiple
factors
common factors
highest common factor
prime number
formal written method exponents

BODMAS
regroup
exchange
multi-step problems
two-step problems
one-step problem
inverse
rounding
rounded to a certain degree of accuracy

